3.354 \(\int (a+a \cos (c+d x))^{5/2} \sec ^{\frac{9}{2}}(c+d x) \, dx\)

Optimal. Leaf size=161 \[ \frac{2 a^2 \sin (c+d x) \sec ^{\frac{7}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}{7 d}+\frac{6 a^3 \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{7 d \sqrt{a \cos (c+d x)+a}}+\frac{46 a^3 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{21 d \sqrt{a \cos (c+d x)+a}}+\frac{92 a^3 \sin (c+d x) \sqrt{\sec (c+d x)}}{21 d \sqrt{a \cos (c+d x)+a}} \]

[Out]

(92*a^3*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(21*d*Sqrt[a + a*Cos[c + d*x]]) + (46*a^3*Sec[c + d*x]^(3/2)*Sin[c +
d*x])/(21*d*Sqrt[a + a*Cos[c + d*x]]) + (6*a^3*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(7*d*Sqrt[a + a*Cos[c + d*x]])
 + (2*a^2*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^(7/2)*Sin[c + d*x])/(7*d)

________________________________________________________________________________________

Rubi [A]  time = 0.346785, antiderivative size = 161, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {4222, 2762, 2980, 2772, 2771} \[ \frac{2 a^2 \sin (c+d x) \sec ^{\frac{7}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}{7 d}+\frac{6 a^3 \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{7 d \sqrt{a \cos (c+d x)+a}}+\frac{46 a^3 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{21 d \sqrt{a \cos (c+d x)+a}}+\frac{92 a^3 \sin (c+d x) \sqrt{\sec (c+d x)}}{21 d \sqrt{a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(5/2)*Sec[c + d*x]^(9/2),x]

[Out]

(92*a^3*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(21*d*Sqrt[a + a*Cos[c + d*x]]) + (46*a^3*Sec[c + d*x]^(3/2)*Sin[c +
d*x])/(21*d*Sqrt[a + a*Cos[c + d*x]]) + (6*a^3*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(7*d*Sqrt[a + a*Cos[c + d*x]])
 + (2*a^2*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^(7/2)*Sin[c + d*x])/(7*d)

Rule 4222

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 2762

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[(b^2*(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c
+ a*d)), x] + Dist[b^2/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)*
Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b*c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1]
&& (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2980

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n
+ 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n + 1)
*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A
, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rule 2772

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[((b*c - a*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]]), x]
+ Dist[((2*n + 3)*(b*c - a*d))/(2*b*(n + 1)*(c^2 - d^2)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2771

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Sim
p[(-2*b^2*Cos[e + f*x])/(f*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin{align*} \int (a+a \cos (c+d x))^{5/2} \sec ^{\frac{9}{2}}(c+d x) \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac{9}{2}}(c+d x)} \, dx\\ &=\frac{2 a^2 \sqrt{a+a \cos (c+d x)} \sec ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{7 d}-\frac{1}{7} \left (2 a \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\left (-\frac{15 a}{2}-\frac{11}{2} a \cos (c+d x)\right ) \sqrt{a+a \cos (c+d x)}}{\cos ^{\frac{7}{2}}(c+d x)} \, dx\\ &=\frac{6 a^3 \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{7 d \sqrt{a+a \cos (c+d x)}}+\frac{2 a^2 \sqrt{a+a \cos (c+d x)} \sec ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac{1}{7} \left (23 a^2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)}}{\cos ^{\frac{5}{2}}(c+d x)} \, dx\\ &=\frac{46 a^3 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{21 d \sqrt{a+a \cos (c+d x)}}+\frac{6 a^3 \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{7 d \sqrt{a+a \cos (c+d x)}}+\frac{2 a^2 \sqrt{a+a \cos (c+d x)} \sec ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac{1}{21} \left (46 a^2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)}}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{92 a^3 \sqrt{\sec (c+d x)} \sin (c+d x)}{21 d \sqrt{a+a \cos (c+d x)}}+\frac{46 a^3 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{21 d \sqrt{a+a \cos (c+d x)}}+\frac{6 a^3 \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{7 d \sqrt{a+a \cos (c+d x)}}+\frac{2 a^2 \sqrt{a+a \cos (c+d x)} \sec ^{\frac{7}{2}}(c+d x) \sin (c+d x)}{7 d}\\ \end{align*}

Mathematica [A]  time = 5.34543, size = 74, normalized size = 0.46 \[ \frac{a^2 (93 \cos (c+d x)+23 \cos (2 (c+d x))+23 \cos (3 (c+d x))+29) \tan \left (\frac{1}{2} (c+d x)\right ) \sec ^{\frac{7}{2}}(c+d x) \sqrt{a (\cos (c+d x)+1)}}{21 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(5/2)*Sec[c + d*x]^(9/2),x]

[Out]

(a^2*Sqrt[a*(1 + Cos[c + d*x])]*(29 + 93*Cos[c + d*x] + 23*Cos[2*(c + d*x)] + 23*Cos[3*(c + d*x)])*Sec[c + d*x
]^(7/2)*Tan[(c + d*x)/2])/(21*d)

________________________________________________________________________________________

Maple [A]  time = 0.392, size = 85, normalized size = 0.5 \begin{align*} -{\frac{2\,{a}^{2} \left ( 46\, \left ( \cos \left ( dx+c \right ) \right ) ^{4}-23\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}-11\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}-9\,\cos \left ( dx+c \right ) -3 \right ) \cos \left ( dx+c \right ) }{21\,d\sin \left ( dx+c \right ) } \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{{\frac{9}{2}}}\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^(5/2)*sec(d*x+c)^(9/2),x)

[Out]

-2/21/d*a^2*(46*cos(d*x+c)^4-23*cos(d*x+c)^3-11*cos(d*x+c)^2-9*cos(d*x+c)-3)*cos(d*x+c)*(1/cos(d*x+c))^(9/2)*(
a*(1+cos(d*x+c)))^(1/2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [A]  time = 1.57842, size = 328, normalized size = 2.04 \begin{align*} \frac{8 \,{\left (\frac{21 \, \sqrt{2} a^{\frac{5}{2}} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{56 \, \sqrt{2} a^{\frac{5}{2}} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{63 \, \sqrt{2} a^{\frac{5}{2}} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac{36 \, \sqrt{2} a^{\frac{5}{2}} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + \frac{8 \, \sqrt{2} a^{\frac{5}{2}} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}}\right )}{\left (\frac{\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{2}}{21 \, d{\left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac{9}{2}}{\left (-\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac{9}{2}}{\left (\frac{2 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{\sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^(9/2),x, algorithm="maxima")

[Out]

8/21*(21*sqrt(2)*a^(5/2)*sin(d*x + c)/(cos(d*x + c) + 1) - 56*sqrt(2)*a^(5/2)*sin(d*x + c)^3/(cos(d*x + c) + 1
)^3 + 63*sqrt(2)*a^(5/2)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 36*sqrt(2)*a^(5/2)*sin(d*x + c)^7/(cos(d*x + c)
 + 1)^7 + 8*sqrt(2)*a^(5/2)*sin(d*x + c)^9/(cos(d*x + c) + 1)^9)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^2/(
d*(sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(2*sin(d*x + c)^2/(
cos(d*x + c) + 1)^2 + sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 1))

________________________________________________________________________________________

Fricas [A]  time = 1.64463, size = 244, normalized size = 1.52 \begin{align*} \frac{2 \,{\left (46 \, a^{2} \cos \left (d x + c\right )^{3} + 23 \, a^{2} \cos \left (d x + c\right )^{2} + 12 \, a^{2} \cos \left (d x + c\right ) + 3 \, a^{2}\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{21 \,{\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )} \sqrt{\cos \left (d x + c\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^(9/2),x, algorithm="fricas")

[Out]

2/21*(46*a^2*cos(d*x + c)^3 + 23*a^2*cos(d*x + c)^2 + 12*a^2*cos(d*x + c) + 3*a^2)*sqrt(a*cos(d*x + c) + a)*si
n(d*x + c)/((d*cos(d*x + c)^4 + d*cos(d*x + c)^3)*sqrt(cos(d*x + c)))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(5/2)*sec(d*x+c)**(9/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^(9/2),x, algorithm="giac")

[Out]

Timed out